java.lang.Object
org.jfree.data.statistics.Regression
A utility class for fitting regression curves to data.
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionstatic double[]
getOLSRegression
(double[][] data) Returns the parameters 'a' and 'b' for an equation y = a + bx, fitted to the data using ordinary least squares regression.static double[]
getOLSRegression
(XYDataset data, int series) Returns the parameters 'a' and 'b' for an equation y = a + bx, fitted to the data using ordinary least squares regression.static double[]
getPolynomialRegression
(XYDataset dataset, int series, int order) Returns the parameters 'a0', 'a1', 'a2', ..., 'an' for a polynomial function of order n, y = a0 + a1 * x + a2 * x^2 + ... + an * x^n, fitted to the data using a polynomial regression equation.static double[]
getPowerRegression
(double[][] data) Returns the parameters 'a' and 'b' for an equation y = ax^b, fitted to the data using a power regression equation.static double[]
getPowerRegression
(XYDataset data, int series) Returns the parameters 'a' and 'b' for an equation y = ax^b, fitted to the data using a power regression equation.
-
Constructor Details
-
Regression
public Regression()
-
-
Method Details
-
getOLSRegression
public static double[] getOLSRegression(double[][] data) Returns the parameters 'a' and 'b' for an equation y = a + bx, fitted to the data using ordinary least squares regression. The result is returned as a double[], where result[0] --> a, and result[1] --> b.- Parameters:
data
- the data.- Returns:
- The parameters.
-
getOLSRegression
Returns the parameters 'a' and 'b' for an equation y = a + bx, fitted to the data using ordinary least squares regression. The result is returned as a double[], where result[0] --> a, and result[1] --> b.- Parameters:
data
- the data.series
- the series (zero-based index).- Returns:
- The parameters.
-
getPowerRegression
public static double[] getPowerRegression(double[][] data) Returns the parameters 'a' and 'b' for an equation y = ax^b, fitted to the data using a power regression equation. The result is returned as an array, where double[0] --> a, and double[1] --> b.- Parameters:
data
- the data.- Returns:
- The parameters.
-
getPowerRegression
Returns the parameters 'a' and 'b' for an equation y = ax^b, fitted to the data using a power regression equation. The result is returned as an array, where double[0] --> a, and double[1] --> b.- Parameters:
data
- the data.series
- the series to fit the regression line against.- Returns:
- The parameters.
-
getPolynomialRegression
Returns the parameters 'a0', 'a1', 'a2', ..., 'an' for a polynomial function of order n, y = a0 + a1 * x + a2 * x^2 + ... + an * x^n, fitted to the data using a polynomial regression equation. The result is returned as an array with a length of n + 2, where double[0] --> a0, double[1] --> a1, .., double[n] --> an. and double[n + 1] is the correlation coefficient R2 Reference: J. D. Faires, R. L. Burden, Numerische Methoden (german edition), pp. 243ff and 327ff.- Parameters:
dataset
- the dataset (null
not permitted).series
- the series to fit the regression line against (the series must have at least order + 1 non-NaN items).order
- the order of the function (> 0).- Returns:
- The parameters.
-